Iterative computational identification of a spacewise dependent the source in a parabolic equations
نویسنده
چکیده
Coefficient inverse problems related to identifying the right-hand side of an equation with use of additional information is of interest among inverse problems for partial differential equations. When considering non-stationary problems, tasks of recovering the dependence of the right-hand side on time and spatial variables can be treated as independent. These tasks relate to a class of linear inverse problems, which sufficiently simplifies their study. This work is devoted to a finding the dependence of right-hand side of multidimensional parabolic equation on spatial variables using additional observations of the solution at the final point of time — the final overdetermination. More general problems are associated with some integral observation of the solution on time — the integral overdetermination. The first method of numerical solution of inverse problems is based on iterative solution of boundary value problem for time derivative with non-local acceleration. The second method is based on the known approach with iterative refinement of desired dependence of the right-hand side on spacial variables. Capabilities of proposed methods are illustrated by numerical examples for model two-dimensional problem of identifying the right-hand side of a parabolic equation. The standard finite-element approximation on space is used, the time discretization is based on fully implicit two-level schemes.
منابع مشابه
Parameter determination in a parabolic inverse problem in general dimensions
It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...
متن کاملA note on uniqueness in the identification of a spacewise dependent source and diffusion coefficient for the heat equation
We investigate uniqueness in the inverse problem of reconstructing simultaneously a spacewise conductivity function and a heat source in the parabolic heat equation from the usual conditions of the direct problem and additional information from a supplementary temperature measurement at a given single instant of time. In the multi-dimensional case, we use Carleman estimates for parabolic equati...
متن کاملComputational technique of linear partial differential equations by reduced differential transform method
This paper presents a class of theoretical and iterative method for linear partial differential equations. An algorithm and analytical solution with a initial condition is obtained using the reduced differential transform method. In this technique, the solution is calculated in the form of a series with easily computable components. There test modeling problems from mathematical mechanic, physi...
متن کاملA note on blow-up in parabolic equations with local and localized sources
This note deals with the systems of parabolic equations with local and localized sources involving $n$ components. We obtained the exponent regions, where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data. It is proved that different initial data can lead to different blow-up phenomena even in the same ...
متن کاملA new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1604.04443 شماره
صفحات -
تاریخ انتشار 2016